USER’S
MANUAL

(

g

Protech
API Package

~N

J

Q/er. M2 Date: 2012/04/0@

Protech APl Package
User’s Manual

Preface

This manual explains how to operate and configure Protech API Package. No part of this
publication may be reproduced or transmit in any form, or by any means, electronic, or mechanical,
including photocopying and recording, without written permission of Protech Systems Co., Ltd.
The information contained in this document is subject to change without prior notice. Protech does
not warrant that the document or information is error-free. If you find any problems in the
documentation, please report them to us in writing.

The software contains proprietary information of Protech Systems Co., Ltd.; it is provided under a
license agreement containing restrictions on use and disclosure and is also protected by copyright
law. Protech shall not be liable for technical or editorial errors or omissions contained herein; nor
for incidental or consequential damages resulting from the furnishing, performance, or use of this
software and accompanying documentation.

Protech reserves the right to make changes to any product or software to improve reliability,
function or design. For version updates or technical support, please contact your local sales
representative.

© Copyright 2011-2012 Protech Systems Co., Ltd. All rights reserved.

Protech Systems Co., Ltd.

No. 24, Lane 365, Yang Goang Street,
Nei Hu District, Taipei 114, Taiwan, R. O. C.
Tel: +886-2-8751-1111
Fax: +886-2-8751-1199

http://www.protech.com.tw

API Package User's Manual

Introduction

Thank you for using Protech APl Package.

The API solution provided by Protech Systems is a benefit to users to control the device with
ease without having to analyze the hardware. It means that the time-wasting issues happened
in general program development process, including trouble dealing with a diversity of
hardware systems and catching on individual hardware specifications, control methods and
communi- cation protocols in practical applications, and the like can be resolved with Protech
API Package.

Feature

The API solution provided by Protech Systems is a benefit to users for the following reasons:

» Speed up product release date:
The API package helps developers design programs without being familiar with the chipset
specifications and driver architecture.

» Reduce workload on programming development items:
Users can control the device by Protech APl package directly — save time to write the
hardware drivers from zero.

Environment
» Windows 32 bit OS + .NET Framework version 2.0 or above

Applicable Field

» Industrial CPU Board
» POSPC

» Applied Computer

» Panel PC

Supported Function

» Programmable GPIO
» Digital 10

» Watch Dog

» Cash Drawer

» Hardware Monitor

» i-Button

» UPS

API Package User's Manual

Table of Contents

Chapter 1 Getting STArTed.........cccveiiie et esreeeeeneenns 1-1
Section 1 API Package CONMTENTccoiiiiiieieeeieese ettt 1-2
Section 2 Open AP Package PrOgIamcovoieiieieeie e seese e e et sae e sae e e s anae e sneanee e 1-4

(O T T (T g2 U [Vo N SRS 2-1
SECHION 1 API PrOCEAUIEc.vieiieeiectieste ettt s et et e nae st e steenteaneesaeenteareenreanee e 2-2
SECHION 2 SAMPIE COUEeeveeiiee ettt et e s re et e e seesneesreeneenreenee e 2-3

Chapter 3 API PaCKage PrOgramMcccciiieiieie e seeie et se e eesae e staesee e sseenaesneesseeeennes 3-1
LT £ T I [I e 1 | OSSPSR 3-2
Section 2 Program GPIO.........covoiiieieeie ettt ettt e sae e teeneenreenee e 3-4
SECHION 3 CASN DIFAWETccviiiiieie ettt e et e e e re e reeneesreenee e 3-5
SECLION 4 WALCH DOQ ...ttt bttt sttt sbe et ne e beenee e 3-6
SECHION 5 SIMBUSottt e s re e te e st e sbe e beeneesreenteanee e 3-7
Section 6 HardWare IMONITON...........veiiiieiieie ettt ae e teeae s e sreesneenee e 3-8
S LTo ([0 A = T 1 (-] OSSPSR 3-9
SECHION 8 I-BUITON ...ttt ettt be e bt e st e b e e nbeeneesbee b 3-10

Chapter 4 Program DeVEIOPINGcouiiiiieieiie ettt sttt ste e sbeesbe e sneens 4-1
SECHION 1 AP FUNCLION ..ottt ettt ettt et esae e neene e neenee e 4-2
Section 2 Digital 10 FUNCLIONcuiiiiieiieie ettt sre e 4-3
SECHION 3 GPIO FUNCHIONciiiieie ettt et esne e e eneesreenee e 4-5
Section 4 Cash Drawer FUNCHIONcc.ooiiiieiicc et 4-6
Section 5 WatCh DOg FUNCLIONcoiiiiiiic ittt re e 4-7
Section 6 Hardware Monitor FUNCHIONcooiiiiiieiie e 4-8
SECtioN 7 SMBUS FUNCHIONooiiiiiiieie ettt e st aesneenreeaeanee e 4-9
SECHION 8 UPS FUNCLION ...ttt ae e steete s e sneennennaenreenne s 4-10
Section 9 1-BULON FUNCLIONcoiiiicii ettt re e steenee s 4-18

N o] 01T o [D AN AN O SRRSO A-1
Section 1 Cannot OPeNn APT PrOGIramcciveieiieiieiesiee e eieseesee e sseesraesaessaessae e sneesseessesneens A-2
Section 2 Cannot Make Sure XML File Correct o NOt.........ccccceoviiiievi i, A-2
Section 3 Cannot Find FUNCioNS iN SUPPOIT LISt......ccuoiiiiiiiiiiereiie e A-3
Section 4 Cannot Run Self-developed Program ... A-3
Section 5 Cannot Use DEMO PrOJECT........ccveiiiieiieiiee et sae e A-3
Section 6 Differences between Digital 10 and GPIOcccooieiiiii i A-3

API Package User's Manual

API Package User's Manual

Chapter 1 Getting Started

1-1

Chapter 1 Getting Started

Section 1 API Package Content

Users can find the enclosed API Package files inside the Protech Manual / Driver CD.
Depending on machine types, the API Package files may include the following:

Operation System

Windows 32 bit + .NET Framework 2.0 or above

Directory Contents / File Name Description
Protech API Package User Guide User Manual in Enalish
A01-0000-000-02-xxxxxx_en.pdf g
Protech APl Package User Guide . .

Document\ A01-0000-000-02-xxxxxx_ch.pdf User Manual in Chinese
IO Description.pdf
UPS Standard SBS Commands.pdf
Function DLL

Directory Function File Name Description
Cash Cash Drawer dll Driver to control Cash
Drawer Drawer
Digital Digital.dll Iliz)rlver to control Digital

GP10O.dll

Winlo.dll
GPIO Winlo.lib Driver to control GP1O

Winlo.sys

WINIO.VXD

Winlo.dll

Winlo.lib
SMBUS Winlo.sys Driver to use SMBUS

WINIO.VXD

SMBUS.dII

Driver to control
ProxAPI standard\ | WDT Watchdog.dll Watchdog

. IButtonAPL.dlI . .
I-Button IBES32.dlI Driver to get 1-Button
Harc!ware Hardware Monitor.dll Driver to read hardware
Monitor data

SBS_Battery.dil Driver to read and control
Battery phymem.sys

battery data
pmdll.dll

multilangXML.dlI

Driver to open XML file

Initial.xml

XML file to initiate the
API Package

ProxAP.exe

API program executable
file

XML Files\Model Name*\Initial.xml

XML file for each model

Version.ini

Version information

Model Name is dependent on your machine type.

1-2

API Package User's Manual

Chapter 1 Getting Started

(continued)

Sample Program

Directory

Contents / File Name

Description

DEMO PROJECT\

DEMO PROJECT\GPIO Sample
Code

C# VB6 VB.net Source
Code

DEMO PROJECT\Digital Sample
Code

C# VB6 VB.net Source
Code

DEMO PROJECT\Watchdog Sample
Code

C# VB6 VB.net MFC
Source Code

API Package User's Manual

1-3

Chapter 1 Getting Started

Section 2 Open API Package Program

An XML file must be included in the API Package for the API program to be executed

normally. Take PS6509 for example, users will need the following files to run API Package:
- ProxAPI standard\Cash Drawer.dll

- ProxAPI standard\multilangXML.dlI

- ProxAPI standard\Watch dog.dll

- ProxAPI standard\Hardware Monitor.dll

- ProxAPI standard\XML Files\6509\Initial.xml
- ProxAPI standard\ProxAP.exe

When developing the program, make sure all necessary files are present in your working
directory, including the function DLLs, multilangXML.dIl, and Initial.xml.

After executing the API program (ProxAP.exe), the program will display the related tabs
based on the machine type selected. That is, on the System tab, select your product model
name from the “Machine Type Load” list on the left pane, and then tap [Load XML] to get
the supported functions displayed in the Support List as shown below:

API functions supported by PROX-F701LF are - Hardware Monitor, Watch Dog and SMBUS.

Protech AFI Package (Demo)

SMBUS | Hardware Monitor | Watch_dog | About

I/O Type
Model
Cash Drawer
Hardware Monitor

Watch Dog Function

Load XML

SMBUS

1-4

API Package User's Manual

Chapter 2 Using API

2-1

Chapter 2 Using API

Section 1 API Procedure

Take VB2005 .NET for example, first you must declare a function. You may create a module
in your project and fill in the function, cash drawer for example.

Declare Function GetCashDrawerStatus Lib CashDrawer.dll (ByVal num_drawer as short)
As Boolean

Declare Function CashDrawerOpen Lib CashDrawer.dll (ByVal num_drawer as short) As
Boolean

Next, create a button to call API Function

1. Call Cash drawer open event:
Private Sub cash_btnl_ Click (ByVal Sender As System.Object, ByVal e As
System.EventArgs) Handles cash_btn1.Click
CashDrawerOpen(1), “1” specifies the cash drawer 1 port
CashDrawerOpen(2), “2” specifies the cash drawer 2 port
Timerl.start

2. Detect Cash drawer status:
A timer event can be created.

Private Sub Timerl_Tick (ByVal Sender As System.Object,ByVal e As System.EventArgs)
Handles Timerl.Tick
Dim Receive_Statusl as Boolean
Dim Receive_Status2 as Boolean
Receive_Statusl = CashDrawerOpen(&H1)
If Receive_Statusl = true then
Textl.text = “cash drawerl open” ‘enter text into textbox.
Else
Textl.text = “cash drawerl close” ‘enter text into textbox.

Receive_Status2 = CashDrawerOpen(&H2)
If Receive_Status2 = true then
Text2.text = “cash drawer2 open” ‘enter text into textbox.
Else
Text2.text = “cash drawer2 close” ‘enter text into textbox.

2-2 API Package User's Manual

Chapter 2 Using API

Section 2 Sample Code

(1) VB Declaration
Declare Function GetCashDrawerStatus Lib CashDrawer.dll (ByVal num_drawer as short)
As Boolean

Declare Function CashDrawerOpen Lib CashDrawer.dll (ByVal num_drawer as short) As
Boolean

(2) Call Function
Open cash drawer:
CashDrawerOpen(1)
Open cash drawerl
CashDrawerOpen(2)
Open cash drawer?2

Check cash drawer status:

Dim receive_status as Boolean

Check cash drawerl status
Receive_Status = CashDrawerOpen(&H1)
Check cash drawer?2 status
Receive_Status = CashDrawerOpen(&H?2)

(1) C# Declaration Method
Public class PortAccess
{
[DHImport(“CashDrawer.dll”,EntryPoint = “Initial_CashDrawer”)]
Public static extern void Initial_CashDrawer();
[DlHImport(“CashDrawer.dll””,EntryPoint= “GetCashDrawerStatus”)]
Public static extern bool GetCashDrawerStatus()
[DHImport(“CashDrawer.dll””,EntryPoint = “CashDrawerOpen”)]
Public static extern bool CashDrawerOpen(short num_drawer);

¥

(2) Call Function
Open cash drawerl

PortAccess.CashDrawerOpen(0x01); /lcheck cash drawerl status
Open cash drawer?2
PortAccess.CashDrawerOpen(0x02); /lcheck cash drawer2 status

Bool bstatus;

bstatus = PortAccess.GetCashDrawerStatus(0x01);

bstatus = PortAccess.GetCashDrawerStatus(0x02); //Before get cash drawer status, need
to initial cash drawer first

API Package User's Manual 2-3

Chapter 2 Using API

VB.NET extern function:

Declare Function SetMinSec Lib “WatchDog.dll” (ByVal kind As Short,ByVal
delay_time As Short) As Boolean

Declare Function Stopwatchdog Lib “WatchDog.dllI” () As Short

Declare Function Setwatchdog Lib “WatchDog.dllI” (ByVal value As Short) As Boolean

Declare Function Digital_Initial Lib “Digital.dll” () As Long
Declare Function Digtial_Set Lib “Digital.dll”’(ByVal hex_value As Short) As Long
Declare Function Digtial_Get Lib ”Digital.dll” () As Short

Declare Function GPIO_Initial Lib “GPI1O.dII” () As Long

Declare Function GP1O_SetPort Lib “GPI10.dII”(ByVal direct As long)

Declare Function GP1O_Set Lib “GPI0O.dII”(ByVal dout_value As long) As Boolean
Declare Function GP1O_Get Lib “GPI10O.dII”() As Short

Declare Function GetCashDrawerStatus Lib CashDrawer.dll (ByVal num_drawer as short)
As Boolean

Declare Function CashDrawerOpen Lib CashDrawer.dll (ByVal num_drawer as short) As
Boolean

VB 6 extern function:

Declare Function CashDrawerOpen Lib "CashDrawer.dll" (ByVal num_drawer As
Integer) As Boolean

Declare Function GetCashDrawerStatus Lib "CashDrawer.dll" (ByVal num_drawer As
Integer) As Boolean

VB.net short = integer VB6

2-4

API Package User's Manual

Chapter 3 API Package Program

3-1

Chapter 3 API Package Program

Section 1 10 Control

The API Package program demonstrates how to use the API Library in a user’s application.
This program developed by VB.NET requires Microsoft .NET Framework version 2.0 or
above.

Protech AFT Fackage {(Demo)

PMB-732LF
PMB472

Load XML

[Initial]
Initialize 10 Function, and if successful the button will become -
[Initial OK!] as shown right.

If [Initial OK!] is not displayed, the execution continued may
fail.

10 Pin Information
The input and output pin numbers on this machine type will be displayed.

3-2 API Package User's Manual

Chapter 3 APl Package Program

10 Pin Control

» Dout Value

Input the hex value to send to the 10 Port.

Take 811LF for example, by default there are 8 output pins in total. If
you want to set all the output pins as “High”, fill “Ox00FF” in the Dout

Value text field.

The “FF” indicates the 8-bit binary value (11111111) as shown below:

Bit7(107) | Bit6(106) | Bit5(105) | Bit4(104) | Bit3(103) | Bit2(102) | Bit1(101) | Bit0(I00)
1 1 1 1 1 1 1 1
Likewise, if you want to set all the output pins as “Low”, fill “0x0000” in
the Dout Value text field.
When working with a 4in/ 4out type, fill in “OF”.
(i.e. the later 4 bits indicate the 10 pin positions to be controlled)
N/A N/A N/A N/A Bit3(103) | Bit2(102) | Bit1(101) | Bito(100)
0 0 0 0 1 1 1 1
» [Write] Tap to output the value of Dout Value to the hardware.
» [Read] Tap to read the input signal value and show the value to the Result field.
» Result The input signal value will be displayed in hex after [Read] is tapped.

API Package User's Manual

3-3

Chapter 3 API Package Program

Section 2 Program GPIO

Protech API Package (Demo)

PMB-732LF
PMB472

Set Direction

Load XML

[Initial]

Initialize 10 Function, and if successful the button will become

[Initial OK!] as shown right. m
If [Initial OK!] is not displayed, the execution continued may

fail.

Direction Change

» Multiple Pin

» [Set Direction]

» Result

Input the hex value to control pin functions as input or output.
For Protech products, the defined output is binary 1, and the defined
input is binary 0.

Take 811LF for example, by default it is 8in/ 8out type. Each pin can
be configured as input or output. If you want to set all the 16 pins as
output, fill “FFFF” in the Multiple Pin text field.

“FFFF” represents to bit16 ~ bitl from left (MSB) to right (LSB).
To restore factory default, reset the power to the machine.

Tap to output the value of Multiple Pin to the system 10.

The returned value, true on success or false on failure, will be
displayed after [Set Direction] is tapped.

3-4

API Package User's Manual

Chapter 3 API Package Program

Section 3 Cash Drawer

Protech AFI Package (Demo)

Load XML

[OPEN]
Tap to open the cash drawer.

Cash Drawer Status
Cash drawer status will be displayed after [OPEN] is tapped.
» Cash drawer is closed as shown.

i—ash Drawer Status:

Close

» Cash drawer is open as shown. Coeth Dreiner SEiE

Open

For example, PS6509 has two cash drawers, so the API program displays two buttons for
each drawer. For a machine with single cash drawer, on the other hand, the API program
displays one button, and so does to a machine that supports one cash drawer only.

API Package User's Manual 3-5

Chapter 3 API Package Program

Section 4 Watch Dog

Protech API Package (Demo)

Q™

‘__1
ek

B

[]
Load XML
START REFRESH STOP

Count Mode

Select the unit of time, second or minute, for the watchdog timer.

Setting Time

» Set Timeout Set the timeout for the watchdog. The maximum timeout value is 255

seconds or minutes.

Watch Dog Control
» Timeout Value Simulation timer of the API program, the running watchdog timeout
will be displayed (in seconds). It is not as accurate as a hardware
watchdog clock.

» [START] Tap to start the watchdog timer. Meanwhile the [REFRESH] and
[STOP] buttons will be enabled.

» [STOP] Tap to stop the watchdog timer.

» [REFRESH] Tap to restart the watchdog timer.

3-6 API Package User's Manual

Chapter 3 API Package Program

Section 5 SMBUS

Users are able to test peripheral devices through the SMBus controller under this tab.

Protech API Package (Demo)

r == SMBUS | Hardware Monitor | ProgramGPIO | [0Control | Watch d ¢ *

BPC8072
BPC-8590LF

ISA588LF
LB-586LF
LF-589
LS-588
PD-9040
PMB-472
PMB-562LF
PMB-587
PMB-732LF
PMB-811LF
POS3120
POS 3130
POS 31532
P0OS-3520
POS 63510

Load XML

-] -
EEHEHEEERH

ol e | [\]
EEHHEEEBEEE

Y]] -

Mm nl =

== -

=] P2

[Initial]

Tap to initialize the SMBus API program.

Slave Address

[¥E] (TE] LE]

= (]

-y
EEEEEEER

EEEHEEENB
]]
= =
N = o B R
= & m =1 =0 K
[= -~
EEBEEEHBR

Set the SMBus position (in hex) to be read or written.

» To read data:

» To write data:

Read up

Set the maximum amount (in hex) of data
to be read.

[Read]
Tap to read data to the text boxes below.

Index

Set the index position (in hex) for writing
data.

Data

Set data (in hex) to be written.

[Write]

Tap to write data to the text boxes below.

SMBUS Data

Data being read or written will be displayed in the text boxes below, after [Read] or

[Write] is tapped.

[Clear]

Tap to clear all the text boxes under SMBUS Data ready for another entry.

API Package User's Manual

3-7

Chapter 3 API Package Program

Section 6 Hardware Monitor

Frotech AFPI Package {(Demo)

System | SMBUS | Hardware Monitor | Watch_dog | About

lemperature

Lomd XML Fan Speed (R.P.M)

[Monitor]
Tap to get the hardware monitoring values, such as the voltages, temperatures, and fan
speeds (rpm).

It is machine type dependent.

3-8 API Package User's Manual

Chapter 3 API Package Program

Section 7 Battery

Protech AFI Package (Demo)

Load XML

[Monitor]
Tap to get the UPS values.

It is machine type dependent.

0x01_RemainingCapacityAlarm:0
0x02_RemainingTimeAlarm:59904
0x03_BatteryMode:0
0x04_AtRate:0
0x05_AtRateTimeToFull:59904
0x06_AtRateTimeToEmpty:0
0x07_AtRate OK:59904
0x08_Temperature:0
0x09_Voltage:59904
0x0A_Current:0
0x0B_AverageCurrent:0
0x0C_MaxError:0
0x0D_RelativeStateOfCharge:0
0x0E_AhsoluteState OfCharge:59904
0x0F_RemainingCapacity:59904
0x10_FullChargeCapacity:0
0x11_RunTimeToEmpty:0
0x12_AverageTimeToEmpty:0
0x13_AverageTimeToFull:0
0x14_ChargingCurrent:0
0x15_ChargingVoltage:0

API Package User's Manual

3-9

Chapter 3 API Package Program

Section 8 I-Button

Frotech AFI Package (Demo)

g = | SMBUS | Hardware Monitor | Cash Drawer Watch_dug IButton m

BPC 8072 ~ =,
BPC8590LF ,'-Jr

ISASBELF
LB-586LF
LF-589
LS-588
PD-9040
PMB-472
PMB-362LF
PMB-587
PMB-732LF
PMB-811LF
POS3120
POS3130
P0OS-3152
P0OS-3520
POS6510

Load XML

[Monitor]
Tap to get the i-Button data that will be displayed below the IBUTTON DATA field.

3-10 API Package User's Manual

Chapter 4 Program Developing

In this Chapter, you will learn essential functions when developing
the program.

Sections included:
® Section 1 APl FUNCLION oo e, 4-2
® Section 2 Digital 10 Functionccoovii v, 4-3

® Section 3 GPIO Function covvviviiiiiiiciiiiiineinn. 45

® Section 4 Cash Drawer Functionccooeeeiiiiiinen... 4-6
® Section 5 Watch Dog Function ..o, 4-7
® Section 6 Hardware Monitor Functionccoeo.... 4-8

® Section 7 SMBUS Function ooooiiiiiiiiiiee. 4-9
® Section 8 UPS FUNCLION ... oee e 4-10

® Section 9 I-Button FUNCLION ... oe oo e e, 4-18

4-1

Chapter 4 Program Developing

Section 1 API Function

The API program-related sample programs, developed in VB.Net and C#, are provided for
easy use of the APl Package. Refer to the main API functions listed as below.

API Function

DLL

Digital 10

Digital_Initial
Digital_Set
Digital_Get

GPIO (10)

GPIO_Initial
GPIO_SetPort
GPIO_Set
GPIO_Get

Cash Drawer

CashDrawerOpen
GetCashDrawerStatus

Watchdog (WD)

Watchdog_Set
Watchdog_Stop
Watchdog_SetMinSec
Watchdog_Recount

Hardware Monitor

HMWVoltage Get
HWMtTemperature_Get
HWMFanSpeed Get

SMBUS

SMBUS _Initialization
SMBUS_Write
SMBUS_Read

multilangXML.dlI

Digital.dIl

GPIO.dI

CashDrawer.dll

WatchDog.dlI

Hardware Montior.dll

SM_Control.dll

API Package User's Manual

Chapter 4 Program Developing

Section 2 Digital 10 Function

| Digital_Initial

bool Digital_Initial () ;

Purpose Initialize Digital API Package.

Value None

Return True (1) on success, False (0) on failure

Before using the API Package, this function should be called to pass XML variables to
the DLL.

| Digital Set

bool Digital_Set (short hex_value);
Purpose Set the digital logic state.
Value hex_value
Return True (1) on success, False (0) on failure

For a 4in/ 4out type, as illustrated below:

VCC
T DIO1
1o o2 1
|
oo Ol ooom
DIN2 7 OO 8 DOUT2
OO
DIN3 DOUT3
9 OO 10

The 4-bit (bit0 ~ bit3) binary value represents the digital output signal.
The binary variable is defined as High (1) and Low (0).

Example Digtial_Set(0x01); // Set DOUTO as High

Digtial_Set(0x09); // 1001, DOUT3 and DOUTO are High;
DOUT2 and DOUT1 are low

API Package User's Manual 4-3

Chapter 4 Program Developing

| Digital Get
short Digital_Get (void);
Purpose Get the digital input signal.
Value None
Return Digital input pin logic state
Example Short data;

data = Digital_Get(); // DIN data, High/ Low input status

4-4

API Package User's Manual

Chapter 4 Program Developing

Section 3 GPIO Function

| GP10_Initial

bool GPIO_lInitial (void);

Purpose Initialize the GPIO API Package.

Value None

Return True (1) on success, False (0) on failure

Before using the API Package, this function should be called.

| GP1O_Set

bool GPIO_Set (long dout value)

Purpose Set the GPIO logic state.
Value dout_value (in hex)
Return True (1) on success, False (0) on failure

| GP1O Get

long GPIO_Get ()

Purpose Get the GPIO input signal.
Value None

Return ~ GPIO input pin logic state
Make sure the GPIO pin is set as input.

| GP10_Setport

bool GPIO_SetPort (long Directvalue)

Purpose Set the GPIO pin as input/ output.
Value DirectValue (in hex)
Return True (1) on success, False (0) on failure

For an 8in/ 8out type of Protech products, the binary variable is defined as
Output (1) and Input (0).
The 8-bit (bit0 ~ bit7) binary value represents each GPIO Pin.

Example GPIO_Set(0x11); // 00010001, GPI0O4 and GPIOO are set to
Output; the others are Input

API Package User's Manual 4-5

Chapter 4 Program Developing

Section 4 Cash Drawer Function

| CashDrawerOpen

bool CashDrawerOpen (short num_drawer);

Purpose Open the cash drawer API.

Value num_drawer = 1 (Open the Cash Drawerl)
2 (Open the Cash Drawer2)

Return True (1) on success, False (0) on failure

Example CashDrawerOpen(0x01); // Open the Cash Drawerl

| GetCashDrawerStatus

bool GetCashDrawerStatus (short num_drawer);

Purpose Get the cash drawer status.

Value num_drawer = 1 (Getthe Cash Drawerl status)
2 (Get the Cash Drawer2 status)

Return True (1) on success, False (0) on failure

Example Short data;
data= GetCashDrawerStatus(0x01);
if (data)

/! Get the Cash Drawerl status

MsgBox(“openl”); // Cash Drawerl status “Open”

Else

MsgBox(“closel”); /[Cash Drawerl status “Close”

Endif

4-6

API Package User's Manual

Chapter 4 Program Developing

Section 5 Watch Dog Function

| Watchdog Set

bool Watchdog_Set (int value)

Purpose Set the timeout for the watchdog timer.
Value value = 0~255
Return True (1) on success, False (0) on failure

| Watchdog_SetMinSec

bool Watchdog_SetMinSec (int kind)

Purpose Set the unit of time as second/ minute.

Value kind = 1 (Measured in unit of second)
2 (Measured in unit of minute)

Return True (1) on success, False (0) on failure

| Watchdog Stop

bool Watchdog_Stop (void)

Purpose Stop the watchdog timer.
Value None
Return True (1) on success, False (0) on failure

| Watchdog_Recount

bool Watchdog Recount (void)

Purpose Restart the watchdog timer.
Value None
Return True (1) on success, False (0) on failure

API Package User's Manual 4-7

Chapter 4 Program Developing

Section 6 Hardware Monitor Function

| HMW\oltage Get

float HMWVoltage_Get (short VoltType)

Purpose Get the hardware monitoring voltage value.

Value VoltType | W83627HF | W83627EHF | SMSC3114 = W83627UHG
0x01 VCoreA CPU VCore N/A VCore
0x02 VCoreB VINO +1.5V VINO
0x03 +3.3VIN AVCC N/A AVCC
0x04 +5VIN +3VCC +5VIN S5VCC
0x05 +12VIN VIN1 +12V VIN1
0x06 -12VIN VIN2 N/A VIN2
0x07 -5VIN VIN3 N/A N/A

Return Float type data on voltage value

| HMWTemperature Get
float HMWTemperature_Get (short TempType)
Purpose Get the hardware monitoring temperature value.
Value TempType | W83627HF | W83627EHF | SMSC3114 | W83627UHG
CPU System CPU CPU
0x01
temperature | temperature | temperature temperature
0X02 N/A cpPu2 N/A N/A
temperature
0x03 N/A N/A N/A N/A
Return Float type data on temperature value
| HMWFanSpeed Get
float HMWFanSpeed_Get (short FanType)

Purpose Get the hardware monitoring fan speed value.

Value FanType | WB83627HF | W83627EHF | SMSC3114 @ W83627UHG
0x01 Fanl SysFanIN FAN1 FAN1
0x02 Fan?2 CPUFANIN FAN2 FAN2
0x03 N/A AUXFANIN N/A N/A

Return Float type data on fan speed value (rpm)

4-8

API Package User's Manual

Chapter 4 Program Developing

Section 7 SMBUS Function

| SMBUS_ Initialization

bool SMBUS_Initialization (int Device)

Purpose Initialize the SMBus API program and set the SMBus device address.
Value None
Return True (1) on success, False (0) on failure

| SMBUS Read

int SMBUS_Read (int Index)

Purpose Read the SMBus data.
Value Index (SMBus address to be read)
Return A byte Array representing the data

| SMBUS_Write

bool SMBUS_Write (int Index, int data)

Purpose Write data into the SMBus.

Value Index (SMBus address to be written)
Data (Data to be written)

Return True (1) on success, False (0) on failure

API Package User's Manual 4-9

Chapter 4 Program Developing

Section 8 UPS Function

| Initialization

bool SMBUS _Initialization (int Decive)

Value Device = 0x16 (The bg20z90/bg20z95 SBS Device Address)
Return True (1) on success, False (0) on failure

| RemainingCapacityAlarm

uint RemainingCapacityAlarm()

Value None
Return ~ Unsigned int value with a range of 0 to 65535

\ RemainingTimeAlarm

uint RemainingTimeAlarm()

Value None
Return Unsigned int value with a range of 0 to 65535

| BatteryMode

byte BatteryMode()

Value None
Return Hex value with a range of 0 to Oxe383

| AtRate

int AtRate()

Value None
Return Signed int value with a range of -32768 to 32767

4-10 API Package User's Manual

Chapter 4 Program Developing

| AtRateTimeToFull

uint AtRateTimeToFull()

Value None
Return Unsigned int value with a range of 0 to 65534

| AtRateTimeToEmpty

uint AtRateTimeToEmpty()

Value None
Return ~ Unsigned int value with a range of 0 to 65534

| AtRateOK

uint AtRateOK()

Value None
Return Unsigned int value with a range of 0 to 65535

| Temperature

uint Temperature()

Value None
Return Unsigned int value with a range of 0 to 65535

| Voltage

uint Voltage()

Value None
Return Unsigned int value with a range of 0 to 65535

API Package User's Manual

4-11

Chapter 4 Program Developing

| Current

int Current()

Value None
Return Signed int value with a range of -32768 to 32767

\ AverageCurrent

int AverageCurrent()

Value None
Return Signed int value with a range of -32768 to 32767

| MaxError

uint MaxError()

Value None
Return Unsigned int value with a range of 0 to 100

| RelativeStateOfCharge

uint RelativeStateOfCharge()

Value None
Return Unsigned int value with a range of 0 to 100

| AbsoluteStateOfCharge

uint AbsoluteStateOfCharge()

Value None
Return Unsigned int value with a range of 0 to 100

4-12

API Package User's Manual

Chapter 4 Program Developing

| RemainingCapacity

uint RemainingCapacity()

Value None
Return Unsigned int value with a range of 0 to 65535

| FullChargeCapacity

uint FullChargeCapacity()

Value None
Return ~ Unsigned int value with a range of 0 to 65535

\ RunTimeToEmpty

uint RunTimeToEmpty()

Value None
Return Unsigned int value with a range of 0 to 65534

| AverageTimeToEmpty

uint AverageTimeToEmpty()

Value None
Return Unsigned int value with a range of 0 to 65534

| AverageTimeToFull

uint AverageTimeToFull()

Value None
Return ~ Unsigned int value with a range of 0 to 65534

API Package User's Manual 4-13

Chapter 4 Program Developing

| ChargingCurrent

uint ChargingCurrent()

Value None
Return Unsigned int value with a range of 0 to 65534

| ChargingVoltage

uint ChargingVoltage()

Value None
Return Unsigned int value with a range of 0 to 65534

| BatteryStatus

uint BatteryStatus()

Value None
Return Unsigned int value with a range of 0x0000 to Oxdbff

| CycleCount

uint CycleCount()

Value None
Return ~ Unsigned int value with a range of 0 to 65535

| DesignCapacity

uint DesignCapacity()

Value None
Return Unsigned int value with a range of 0 to 65535

4-14 API Package User's Manual

Chapter 4 Program Developing

| DesignVoltage

uint DesignVoltage()

Value None
Return ~ Unsigned int value with a range of 0 to 65535

| SpecificationInfo

byte SpecificationInfo()

Value None
Return Hex value with a range of 0 to OxFFFF

| CellBoltage01

uint CellBoltage01()

Value None
Return ~ Unsigned int value with a range of 0 to 65535

| CellBoltage02

uint CellBoltage02()

Value None
Return Unsigned int value with a range of 0 to 65535

| CellBoltage03

uint CellBoltage03()

Value None
Return Unsigned int value with a range of 0 to 65535

API Package User's Manual

4-15

Chapter 4 Program Developing

| CellBoltage04

Value None

Return

SBS Command Values

uint CellBoltage04()

Unsigned int value with a range of 0 to 65535

Name Format Sizein Min Max | Default Unit
Bytes | Value | Value | Value
RemainingCapacityAlarm | unsigned int 2 0 65535| 300 MAR or
10mWh
RemainingTimeAlarm unsigned int 2 0 65535 10 min
BatteryMode hex 2 0x0000 | Oxe383| —
. . mA or
AtRate signed int 2 -32768 | 32767 — 10mwW
AtRateTimeToFull unsigned int 2 0 65534 | — min
AtRateTimeToEmpty unsigned int 2 0 65534 — min
AtRateOK unsigned int 2 0 65535 —
Temperature unsigned int 2 0 65535 — 01K
Voltage unsigned int 2 0 65535 — mV
Current signed int 2 -32768 | 32767 — mA
AverageCurrent signed int 2 -32768 | 32767 — mA
MaxError unsigned int 1 0 100 — %
RelativeStateOfCharge unsigned int 1 0 100 — %
AbsoluteStateOfCharge unsigned int 1 0 100+ — %
- . . . mAh or
RemainingCapacity unsigned int 2 0 65535 — 10mwWh
FullChargeCapacity unsigned int 2 0 65535 «—— %’?‘nf{,\%

API Package User's Manual

Chapter 4 Program Developing

(continued)

Narme Format Sizein | Min Max | Default Unit
Bytes | Value | Value | Value
RunTimeToEmpty unsigned int 2 0 65534 — min
AverageTimeToEmpty unsigned int 2 0 65534 — min
AverageTimeToFull unsigned int 2 0 65534 — min
ChargingCurrent unsigned int 2 0 65534 — mA
ChargingVoltage unsigned int 2 0 65534 — mV
BatteryStatus unsigned int 2 0x0000 | Oxdbff —
CycleCount unsigned int 2 0 65535 —
DesignCapacity unsigned int 2 0 65535 | 4400 {8?3\%
DesignVoltage unsigned int 2 0 65535 | 14400 mV
Specificationinfo hex 2 0x0000 | Oxffff | 0x0031
CellVoltaged unsigned int 2 0 65535 — mV
CellVoltage3 unsigned int 2 0 65535 — mV
CellVoltage2 unsigned int 2 0 65535 — mV
CellVoltagel unsigned int 2 0 65535 — mV
API Package User's Manual 4-17

Chapter 4 Program Developing

Section 9 I-Button Function

| Decode_Ibutton Process

bool Decode_lbutton_Process(short[] buffer)

Purpose Get the i-Button data.
Value Buffer = i-Button read will sent to this buffer
Return True (1) on success, False (0) on failure

4-18 API Package User's Manual

Q
A
F

dix A

n

pe

P

A

1
A-

Appendix A FAQ

Section 1 Cannot Open API Program

Answer: There are two possible reasons:
(1) .Net framework 2.0 or above is not installed on the operating system yet.
(2) Lack of an XML file for the API Package.

Section 2 Cannot Make Sure XML File Correct or Not

Answer: After opening the APl program, you can verify whether all functions for this
model are presented in the Support List on the System tab.

Protech API Package (Demo)

System | SMBUS | Cash Drawer| Hardware Monitor | About

P0OS-3150
P0OS3152
P0OS-3520
POS 6510
POS 6600
POS 6620
PPC74X
PPC7520LF
PPC761X
PPC791x
PROX-B822LF . Model
PROX-SB101LF

I/O Type

PS3001 i Cash Drawer
PS6508

PS6509 !

PaB-1720LEF | Hardware Monitor
PSBS11LF I

PSB-589LF

Watch Dog Function

.
SMBUS

The Initial.xml file in the ProxAPI standard folder is required to be replaced when using
different machine type.

For example, if the PS3100 is desired, replace the XML file by one of the following:

1) Manually replace the XML file, by overwriting the old Initial.xml (ProxAPI standard\)
with the new one (ProxAPI standard\XML Files\PS3100\Initial.xml). Then verify it in
the API program.

2) In API program, select PS3100 from the “Machine Type Load” list on the left pane, and

then tap [Load XML] to have the program replace the Initial.xml automatically.

A-2 API Package User's Manual

Appendix A FAQ

Section 3 Cannot Find Functions in Support List

Answer: Functions displayed in the Support List are machine type dependent. Take PS3100
for example, the 1/0 Type field is marked with “N/A” in the Support List and you will be
unable to find the 10 Control tab as the PS3100 does not support Digital 1/0.

Section 4 Cannot Run Self-developed Program

Answer: Make sure that all the API Package files are placed in your working directory and
all links are already set. Meanwhile, the Initial.xml file has to be in place as well for the
functions to work correctly.

Section 5 Cannot Use Demo Project

Answer: When using the Demo Project provided by Protech, you should make sure the

Initial.xml file included in the API package corresponds to your developing machine type, to
secure the link between files.

Section 6 Differences between Digital 10 and GPIO

Answer: Each GPIO pin can be configured to be input or output, while Digital 10 cannot.
Therefore, you can change the GPIO pin direction from input to output, and vice versa.

By default, a 4in/ 4out type will be provided for developing applications. Note that these
changes will be overwritten with default values after restarting the machine.

If the machine type supports GPIO, the additional Program GPI1O tab will be displayed in
the API program.

API Package User's Manual A-3

	Protech API Package
	Introduction

	Table of Contents
	Chapter 1 Getting Started
	Section 1 API Package Content
	Section 2 Open API Package Program

	Chapter 2 Using API
	Section 1 API Procedure
	Section 2 Sample Code

	Chapter 3 API Package Program
	Section 1 IO Control
	Section 2 Program GPIO
	Section 3 Cash Drawer
	Section 4 Watch Dog
	Section 5 SMBUS
	Section 6 Hardware Monitor
	Section 7 Battery
	Section 8 I-Button

	Chapter 4 Program Developing
	Section 1 API Function
	Section 2 Digital IO Function
	Section 3 GPIO Function
	Section 4 Cash Drawer Function
	Section 5 Watch Dog Function
	Section 6 Hardware Monitor Function
	Section 7 SMBUS Function
	Section 8 UPS Function
	Section 9 I-Button Function

	Appendix A FAQ
	Section 1 Cannot Open API Program
	Section 2 Cannot Make Sure XML File Correct or Not
	Section 3 Cannot Find Functions in Support List
	Section 4 Cannot Run Self-developed Program
	Section 5 Cannot Use Demo Project
	Section 6 Differences between Digital IO and GPIO

